Recommendation

Install a 150 hp motor to replace the 250 hp motor on mixing tank, this will allow normal mixing operations to continue and reduce associated annual energy consumption by 40.0%.

Annual Savings Summary						
Source	Quantity	Units	Cost Savings			
Electrical Consumption	45,213	kWh (site)	\$2,645			
Electrical Demand	942	kW Months / yr	\$5,152			
Total	154	MMBtu	\$7,797			

Implementation Cost Summary				
Description	Cost	Payback (yrs.)		
Before Incentives	\$13,333	1.7		
After Incentives	\$5,333	0.7		

Facility Background

The facility uses one 250 hp motor for mixing asphalt and flux into a heterogeneous mixture which is applied to the shingles. Facility personnel estimated the mixing process runs for approximately 48 hours per month. This motor is fixed on the roof of a tank. Facility personnel informed analysts that this motor was now oversized since the installation of a new agitator has reduced load on this motor. Facility personnel told analysts the motor could be replaced with a 150 hp motor to perform the same operation. On assessment day, the facility was not mixing, which prevented analysts from retrieving a live reading of the motor under load.

Opportunity Background

The efficiency of a motor is greatly influenced by the percent of full-load amperage it experiences while operating. Oversized motors perform effectively when under a large load, but are less efficient than a motor that is sized for the same load. Replacing an oversized motor with an appropriately sized one represents a significant energy savings opportunity.

Figure 2-1 Efficiency curve of a typical motor. [1]

3 - AR No. 2 - Replace Oversized Mixer Motor

Oregon State Energy Efficiency University Center

Proposal

Install a 150 hp motor to replace the current 250 hp motor used to mix hot asphalt in the mixing tank. Annual cost savings are estimated at \$7,797 after an implementation cost of \$13,333 resulting in a simple payback period of 1.7 years.

Implementation

The existing 250 hp motor should be removed from the mixing tank. A 150 hp motor can be installed with the same equipment used to remove the current motor. According to RSMeans [1], the material cost of a 150 hp motor is \$12,600 with a \$730 installation.

Incentives

Energy Trust of Oregon provides incentives for industrial projects involving motor replacement. The typical incentive is \$0.25 per annual kWh saved, up to 50% of the project cost.

Calculation Methodology

Analysts estimate the load using the Motor Analysis Tool, assuming that the maximum load applied to the proposed 150 hp motor is the maximum load rated for that motor. The same load is applied to the 250 hp motor. Energy savings is calculated from the difference in electricity consumption by the current 250 hp motor and the proposed 150 hp motor.

Notes

Because live readings were not available, analysts must estimate the load based on the sizing of the motor proposed by the facility.

References

- [1] A. C. Charest, Ed., *RSMeans Electrical Cost Data 2015*, 38th ed. Norwell, MA: RSMeans, 2014, p. 303.
- [2] US Department of ENergy, "Motor Tip Sheet #3." National Renewable Energy Laboratory, Jan-2000.

ARC Code	Data Collection	Author	Orange Team Review	Black Team Review
2.4131	Analyst Name	Analyst Name	Analyst Name	Analyst Name

Motor Analysis Too	l - Datalo	og (MAT)		University Center
				Motor Datalog Analysis Tool Nov. 2013a, style 2013b
Motor Identification				Equations
Motor Description	C			Eq. 1) Full Load Power (P _{FL})
	Curi	rent Mixer Motor		$\frac{W_R}{W_R} = 0.7457 \ kW$
Motor Location	He	ot asphalt tanks		$\eta_{_{FL}}$ 1 hp
				Eq. 2) Annual Operation Hours (t ₀)
Data Collected				$t_{} \times \frac{12months}{1}$
Motor Nameplate Data				year
Motor Power Supply Type	T	hree-Phase AC	(N. 1)	Eq. 3) Electrical Demand (E_D)
Motor Enclosure Type		TEFC	(N. 1)	$P_{\rm rr} \times \frac{12months}{1}$
Motor Drive Type	Si	tandard V-Belt	(N. 1)	year
Rated Horsepower	(W _R)	250.0 hp	(N. 1)	Eq. 4) Energy Consumption (t _O)
Rated Voltage	(V_R)	460 volts	(N. 1)	$P_{FL} imes t_O$
Rated Full-Load Amperage	(I_R)	285.0 amps	(N. 1)	
Rated Full-Load Speed	(N_R)	1,180 rpm	(N. 1)	
Operation Data				
Montly Operation Hours	(t _M)	48 hrs/month	(N. 2)	
Motor Performance Analysis	5			
Mechanical Drive Efficiency	(η _D)	93.0%	(Rf. 1)	
Synchronous Speed	(N _s)	<i>1,200</i> rpm		
Full-Load Amperage	(I_R)	285.0 amps		
Full-Load Efficiency	(η_{FL})	95.0%	(Rf. 2)	
Full-Load Power Factor	(PF_{FL})	83.0%		
Full Load Power	(P _{FL})	196.24 kW	(Eq. 1)	
Energy Analysis				
Current Conditions				
Annual Operation Hours	(t ₀)	576 hrs	(N. 2, Eq. 2)	
Energy Demand	(E _D)	2,355 kW-mo/yr	(Eq. 3)	
Energy Consumption	(E _C)	113,032 kWh/yr	(Eq. 4)	
Notes				

<u>.</u>

N. 1) Nameplate data was collected during the site assessment from site personnel and equipment.

N. 2) Estimate obtained from facility personnel based on monthly production data.

N. 3) Obtained from USDOE Motor Tip Sheet #3 [2].

N. 4) Obtained from NEMA Standards Publication MG 1-2006 (Premium Efficiency Motors).

Motor Analysis Too	l - Datalo	g (MAT)		University Center
				Motor Datalog Analysis Tool Nov. 2013a, style 2013b
Motor Identification				Equations
Motor Description	D	134. 34 /		Eq. 1) Full Load Power (P _{FL})
	Prope	osed Mixer Motor		$\frac{W_R}{W_R} = 0.7457 \ kW$
Motor Location	Ho	ot asphalt tanks		$\eta_{_{FL}}$ 1 hp
				Eq. 2) Annual Operation Hours (t ₀)
Data Collected				$t_{} \times \frac{12months}{1}$
Motor Nameplate Data				year
Motor Power Supply Type	T	ree-Phase AC	(N. 1)	Eq. 3) Electrical Demand (E_D)
Motor Enclosure Type		TEFC	(N. 1)	$P_{\rm rr} \times \frac{12months}{1}$
Motor Drive Type		Direct Drive	(N. 1)	year
Rated Horsepower	(W _R)	150.0 hp	(N. 1)	Eq. 4) Energy Consumption (t_0)
Rated Voltage	(V_R)	460 volts	(N. 1)	$P_{FL} imes t_O$
Rated Full-Load Amperage	(I _R)	163.0 amps	(N. 1)	
Rated Full-Load Speed	(N _R)	1,180 rpm	(N. 1)	
Operation Data				
Montly Operation Hours	(t _M)	48 hrs/month	(N. 2)	
Motor Performance Analysis	5			
Mechanical Drive Efficiency	(η _D)	<i>99.5%</i>	(Rf. 1)	
Synchronous Speed	(N _s)	<i>1,200</i> rpm		
Full-Load Amperage	(I_{FL})	163.0 amps		
Full-Load Efficiency	(η_{FL})	95.0%	(Rf. 2)	
Full-Load Power Factor	(PF_{FL})	83.0%		
Full Load Power	(P _{FL})	<i>117.74</i> kW	(Eq. 1)	
Energy Analysis				
Proposed Conditions				
Annual Operation Hours	(t ₀)	576 hrs	(N. 2, Eq. 2)	
Energy Demand	(E _D)	1,413 kW-mo/yr	(Eq. 3)	
Energy Consumption	(E _C)	67,819 kWh/yr	(Eq. 4)	
Notes				

N. 1) Nameplate data was collected during the site assessment from site personnel and equipment.

N. 2) Estimate obtained from facility personnel based on monthly production data.

N. 3) Obtained from USDOE Motor Tip Sheet #3 [2].

N. 4) Obtained from NEMA Standards Publication MG 1-2006 (Premium Efficiency Motors).

3 - AR No. 2 - Analysis

Key Input Data

Recommendation Data				
Current Operation Time	(t _C)	576	hrs./yr.	(N. 1)
Total System Energy	(E _T)	113,032	kWh	
Electricity Data			_	
Incremental Electricity Cost	(IC _E)	\$0.0585	/kWh	(N. 3)
Current Electrical Consumption	(E _{C,E})	113,032	kWh	(N. 2)
Proposed Electrical Consumption	$(E_{P,E})$	67,819	kWh	
Demand Data			_	
Incremental Demand Cost	(IC _D)	\$5.47	/kW·mo	(N. 3)
Current Electrical Demand	(E _{C,D})	2,355	kW∙mo	
Proposed Electrical Demand	$(E_{P,D})$	1,413	kW∙mo	

Energy Analysis

Current Conditions				
Current Electrical Consumption	$(E_{C,E})$	113,032	kWh	
Current Electrical Demand	(E _{C,D})	2,355	kW∙mo	
Current Energy Cost	(C _C)	\$19,493	/yr.	(Eq. 1)
Proposed Conditions				
Proposed Electrical Consumption	$(E_{P,E})$	67,819	kWh	
Proposed Electrical Demand	$(E_{P,D})$	1,413	kW∙mo	
Proposed Energy Cost	(C _P)	\$11,696	/yr.	(Eq. 1)
Savings				
Electrical Savings	$(E_{S,E})$	45,213	kWh	(Eq. 2)
Demand Savings	(E _{S,D})	<i>942</i>	kW∙mo	(Eq. 2)
Cost Savings	(S)	\$7,797	/yr.	(Eq. 3)

Oregon State Energy Efficiency University Center

Replace Oversized Motor, style 2018 v1.0

Equations

Analysis Equations
Eq. 1) Energy Cost (C)
$\sum E \times IC$
Eq. 2) Energy Savings (E _S)
$E_C - E_P$
Eq. 3) Cost Savings (S)
$C_C - C_P$
Notes

N. 1) Current operating hours of the energy consuming system.

N. 2) Developed on the Motor Analysis Tool pages of this recommendation.

N. 3) Developed in the Utility Analysis section of this report.

3 - AR No. 2 - Implementation

implementation Cost marys	15			
Material Costs				
150 hp Motor	(C _{M1})	\$12,600	/unit	(N. 4)
Quantity	(Q)	1	unit	
Total Material Cost	(C _M)	\$12,600	_	(Eq. 4)
Labor Costs			_	
Electrician Labor Rate	(R _L)	\$55	/hr	(N. 4)
Electrician Labor Hours	(t _L)	13.3	hours	(N. 4)
Total Labor Cost	(C _L)	\$733	-	(N. 4)
Economic Results				
Annual Cost Savings	(S)	\$7,797	/year	(Eq. 4)
Implementation Cost	(C _I)	\$13,333		(Eq. 5)
Simple Payback	(t _{PB})	1.7	years	(Eq. 6)
Incentive Data				
Annual Energy Savings	(E _s)	45,213	kWh	(Eq. 2)

Implementation Cost Analysis

Oregon State Energy Efficiency University Center

Replace Oversized Motor, style 2018 v1.0

_	Equations
	Eq. 4) Total Material Cost (C _M)
	$C_{_{M1}} imes Q$
	Eq. 5) Total Material Cost (C _M)
	$C_M + C_L$
	Eq. 6) Simple Payback (t _{PB})
	$\underline{C_{I}}$
	S
	Notes
	N. 4) Obtained from RSMeans Electrical
	Cost Data page 303 [1].

Incentive Analysis Summary

Description	Incentive	After	Payback	Notes
			(yrs)	
Energy Trust of Oregon	\$8,000	\$5,333	0.7	\$0.25 per annual kWh saved, up to 60 - 75% of project cost.
Totals	\$8,000	\$5,333	0.7	